If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2-36a-108=0
a = 6; b = -36; c = -108;
Δ = b2-4ac
Δ = -362-4·6·(-108)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36\sqrt{3}}{2*6}=\frac{36-36\sqrt{3}}{12} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36\sqrt{3}}{2*6}=\frac{36+36\sqrt{3}}{12} $
| -2y−10=8+4y | | 296/x=100 | | 36+7w=11w | | 3/8x-1/8=5/16 | | 4x136+12x=104 | | (x)/(3)=-(5)/(2) | | -3d=-5−2d | | -3/4(8x-12)=-12 | | x+130=120° | | -3p−10=-6p+2 | | 496/x=152 | | (3x+14)=(2x+10) | | 3n^2+8n+16=2n^2 | | 4y-4=4y+4 | | 15-7=5x+3x | | 10+n=-10+6n | | 12x3+60x+74=0 | | (2x)(x=31) | | 10p+9-11-p=-2(2p+4)-32p-2) | | -5k-2=23 | | 7-x=+14 | | b−9=2b | | xE2+11=36 | | -2(7x-6)+3(5x-5)-2=6-4 | | 10s=9s+8 | | 4(-2a+4)=48 | | 85-9g=5(-4+2g) | | 3(x-3)/4-x=1-x/6 | | -2a-5=-7 | | p-(p-(p-(p-1)))=0 | | -4(4v+3)=52 | | 10−7j=3j−10 |